\justifying \large
\begin{frame} { факториал01 }

У Васи есть мороженое, пирожное и торт. У него выбор --- в каком порядке есть сладости. А сколько бывает таких порядков?

\end{frame}

\begin{frame} { факториал02 }

Сколькими способами можно расставить в шеренгу четыре человека?

\end{frame}

\begin{frame} { факториал03 }

У коробок с соком разные цвета крышечек: у яблочного сока - зелёная, у виноградного - фиолетовая, у гранатового - красная, у мультифрукта - жёлтая. На обеде все соки были открыты. Сколькими способами можно закрыть соки имеющимися крышечками?

\end{frame}

\begin{frame} { факториал04 }

В стране пять городов, и между каждыми двумя есть дорога. Путешественник хочет начать в каком-то из городов и проехать через все города, посетив каждый по одному разу. Сколько у него способов это сделать?

\end{frame}

\begin{frame} { факториал05 }

Заполните пропуски в решении задачи "Сколькими способами можно поставить в ряд 10 человек?". Есть __ вариантов поставить кого-то на первое место. После этого есть __ вариантов поставить кого-то на второе место. Эти числа нужно __, потому то на каждый из вариантов поставить первого есть __ вариантов поставить второго. На третье место есть __ вариантов поставить человека, и т.д. Получается ответ: __

\end{frame}

\begin{frame} { факториал06 }

Назовём число красивым, если в нём все цифры разные и нечётные. Сколько существует пятизначных красивых чисел?

\end{frame}

\begin{frame} { факториал07 }

Назовём число "красивым", если в нём все цифры разные и нечётные. Сколько существует четырёхзначных красивых чисел?

\end{frame}

\begin{frame} { факториал08 }

Сколькими способами можно переставить буквы в слове "ТОЧКА"?

\end{frame}

\begin{frame} { факториал09 }

Сколькими способами можно переставить буквы в слове "СТРОЧКА"?

\end{frame}

\begin{frame} { факториал10 }

Сколькими способами можно переставить буквы в слове "ТРЕУГОЛЬНИК"?

\end{frame}

\begin{frame} { факториал11 }

В пассажирском поезде 17 вагонов. Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?

\end{frame}

\begin{frame} { факториал12 }

Сколькими способами 15 учеников могут выстроиться в очередь в столовую?

\end{frame}

\begin{frame} { факториал13 }

Сколькими способами можно расставить на доске $8 \times8$ восемь ладей так, чтобы никакие две ладьи не стояли на одной горизонтали или на одной вертикали?

\end{frame}

\begin{frame} { факториал14 }

На дискотеку пришло 15 мальчиков и 15 девочек. Сколькими способами они могут разбиться на пары для танцев, если в каждой паре должны быть мальчик и девочка?

\end{frame}

\begin{frame} { факториал15 }

На дискотеку пришли 15 мальчиков и 14 девочек. Сколькими способами из них можно сформировать 14 пар для танцев, если в каждой паре должны быть мальчик и девочка?

\end{frame}

\begin{frame} { факториал16 }

В каждой клетке квадрата $3\times 3$ написана цифра от 1 до 9. Цифры не повторяются. Сколько существует таких квадратов? Варианты, отличающиеся поворотом или переворотом, считаются разными. Здесь нужен точный ответ без знака факториала.

\end{frame}

\begin{frame} { факториал17 }

Вы отмерили $10!$ секунд. А сколько это в неделях?

\end{frame}

\begin{frame} { факториал18 }

На сколько нулей оканчивается число $100!$?

\end{frame}

\begin{frame} { факториал19 }

Число $n!$ не может оканчиваться на: 21, 22, 23, 24, 25 нулей (отметьте нужное).

\end{frame}